Natriuretic peptides block synaptic transmission by activating phosphodiesterase 2A and reducing presynaptic PKA activity.
نویسندگان
چکیده
The heart peptide hormone atrial natriuretic peptide (ANP) regulates blood pressure by stimulating guanylyl cyclase-A to produce cyclic guanosine monophosphate (cGMP). ANP and guanylyl cyclase-A are also expressed in many brain areas, but their physiological functions and downstream signaling pathways remain enigmatic. Here we investigated the physiological functions of ANP signaling in the neural pathway from the medial habenula (MHb) to the interpeduncular nucleus (IPN). Biochemical assays indicate that ANP increases cGMP accumulation in the IPN of mouse brain slices. Using optogenetic stimulation and electrophysiological recordings, we show that both ANP and brain natriuretic peptide profoundly block glutamate release from MHb neurons. Pharmacological applications reveal that this blockade is mediated by phosphodiesterase 2A (PDE2A) but not by cGMP-stimulated protein kinase-G or cGMP-sensitive cyclic nucleotide-gated channels. In addition, focal infusion of ANP into the IPN enhances stress-induced analgesia, and the enhancement is prevented by PDE2A inhibitors. PDE2A is richly expressed in the axonal terminals of MHb neurons, and its activation by cGMP depletes cyclic adenosine monophosphates. The inhibitory effect of ANP on glutamate release is reversed by selectively activating protein kinase A. These results demonstrate strong presynaptic inhibition by natriuretic peptides in the brain and suggest important physiological and behavioral roles of PDE2A in modulating neurotransmitter release by negative crosstalk between cGMP-signaling and cyclic adenosine monophosphate-signaling pathways.
منابع مشابه
Chemically induced, activity-independent LTD elicited by simultaneous activation of PKG and inhibition of PKA.
Although it is widely agreed that cyclic AMP is necessary for the full expression of long-term potentiation of synaptic strength, it is unclear whether cyclic AMP or cyclic AMP-dependent protein kinase (PKA) play roles in the induction of long-term depression (LTD). We show here that two PKA inhibitors, H-89 (10 microM) and KT5720 (1 microM), are unable to block induction of LTD at Schaffer col...
متن کاملOpposing facilitatory and inhibitory modulation of glutamate release elicited by cAMP production in cerebrocortical nerve terminals (synaptosomes).
Activation of cAMP-protein kinase A (PKA) is widely reported to facilitate synaptic transmission. Here, we examined the presynaptic loci of PKA action using isolated nerve terminals (synaptosoms). The adenylyl cyclase (AC) activator, forskolin, failed to have any effect on 4-aminopyridine (4-AP)-evoked glutamate release, when added alone. However, in the presence of the alkylxanthine, IBMX, for...
متن کاملEfficacy of B-Type Natriuretic Peptide Is Coupled to Phosphodiesterase 2A in Cardiac Sympathetic Neurons.
Elevated B-type natriuretic peptide (BNP) regulates cGMP-phosphodiesterase activity. Its elevation is regarded as an early compensatory response to cardiac failure where it can facilitate sympathovagal balance and cardiorenal homeostasis. However, recent reports suggest a paradoxical proadrenergic action of BNP. Because phosphodiesterase activity is altered in cardiovascular disease, we tested ...
متن کاملNatriuretic peptides like NO facilitate cardiac vagal neurotransmission and bradycardia via a cGMP pathway.
We tested the hypothesis that natriuretic peptide receptors (NPRs) that are coupled to cGMP production act in a similar way to nitric oxide (NO) by enhancing acetylcholine release and vagal-induced bradycardia. The effects of enzyme inhibitors and channel blockers on the action of atrial natriuretic peptide (ANP), brain-derived natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) wer...
متن کاملBradykinin enhances AMPA and NMDA receptor activity in spinal cord dorsal horn neurons by activating multiple kinases to produce pain hypersensitivity.
Bradykinin potentiates synaptic glutamate release and action in the spinal cord via presynaptic and postsynaptic B(2) receptors, contributing thereby to activity-dependent central sensitization and pain hypersensitivity (Wang et al., 2005). We have now examined the signaling pathways that are responsible for the postsynaptic modulatory actions of bradykinin on glutamatergic action and transmiss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 43 شماره
صفحات -
تاریخ انتشار 2012